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Strip foundations on a cross-anisotropic soil layer subjected to 
dynamic loading 

G. GAZETAS* 

A rigorous semi-analytical formulation is presented to 
study the static and dynamic response of rigid strip 
footings supported on the surface of a horizontally 
layered soil deposit. Each layer is modelled as a homo- 
geneous cross-anisotropic medium with a vertical axis of 
material symmetry while the loading consists of har- 
monically time-varying horizontal or vertical forces and 
moments. The solution, based on an experimentally 
verified relationship among the anisotropic soil para- 
meters that uncouples the wave equations in closed- 
form, is exact in that it properly accounts for the true 
boundary conditions at the layer interfaces and the 
surface. Comprehensive parametric studies are presented 
in the form of normalized displacement-load or rota- 
tion-moment ratios as functions of dimensionless geo- 
metric and material parameters. Simple and sufficiently 
accurate formulas ofdirect practical applicability are also 
given for static displacements and resonant frequency 
factors. The results clearly demonstrate the significance of 
soil anisotropy in determining undrained static and 
dynamic response of foundations; soils with a large ratio 
of horizontal to vertical Young’s moduli experience 
smaller static displacements and quite different dynamic 
response characteristics from equivalent isotropic soil 
deposits. 

L’article presente une formulation semi-analytique 
rigoureuse pour itudier la reponse dynamique et statique 
de semelles Mantes rigide reposant a la surface de 
sediments de sob a couches horizontales. Chaque couche 
est modelisee sous la forme dun milieu homogtne de 
section anisotrope ayant un axe vertical de symetrie 
materielle, tandis que la charge est constitute de forces 
et moments verticaux ou horizontaux a variation 
harmonique dans le temps. La solution, bake sur une 
relation verifite expkimentalement entre les parametres 
de sots anisotropes qui decouple les equations d’onde de 
forme fermte, est exacte en ce qu’elle tient bien compte des 
conditions de hmite vraie aux interfaces des couches et a la 
surface. L’article presente des etudes parametriques 
completes sous la forme de rapports rotation-moment ou 
d&placement-charge normalises en tant que fonctions de 
paramttres materiels et giomitriques adimensionnels. 
L’article prtsente egalement des formules simples et 
suffisamment precises ayant une application pratique 
directe pour des facteurs de friquence de resonance et des 
deplacements statiques. Les resultats montrent bien 
I’importance que represente l’anisotropie des sols pour la 
determination de la reponse dynamique et statique non 
drainte de fondations; dans le cas de sob dont le rapport 
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des modules d’ilasticite de Young horizontal/vertical est 
important, les d&placements statiques sont moindres et les 
caracteristiques de response dynamique sont totalement 
differents de celles de sediments de sols isotropiques 
equivalents. 
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(= OB &PIE”)) 
half of the foundation width 
elastic stiffness parameters of an aniso- 
tropic material (equation (5)) 
Young’s modulus in vertical and hori- 
zontal directions 
shear modulus in vertical and hori- 
zontal planes 

WI@ 
thickness of soil stratum 

WlB 
pseudo-distortional wave potential 
moment on a rigid foundation (with 
respect to axis Oy) 

En/& 
pseudo-dilatational wave potential 
horizontal force of a rigid foundation 
vertical force of a rigid foundation 
dE,,dz 
horizontal displacement 
vertical displacement 
horizontal co-ordinate 
vertical co-ordinate 

&WP) 
JCGVHIP) 
horizontal displacement of a rigid 
foundation 
vertical displacement of a rigid founda- 
tion 
normal and shear strain components 
Poisson’s ratio for effect of vertical 
strain on horizontal strain 
Poisson’s ratio for effect of horizontal 
strain on complementary horizontal 
strain 
soil damping ratio 
angle of rotation of a rigid foundation 
(with respect to axis Oy) 
soil density 
normal and shear stress components 
frequency of vibration (rad/s) 
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INTRODUCTION 

A large body of experimental evidence suggests that 
soils and rocks in nature invariably exhibit some 
degree of anisotropy in their response to stresses. 
Natural clay deposits, for instance, during their 
formation by sedimentation and subsequent one- 
dimensional consolidation acquire a fabric that is 
characterized by particles or particle-units oriented 
in a horizontal arrangement. This preferred 
orientation and the resulting electrochemical 
bonds among the clay particles are the cause of 
cross-anisotropic deformational behaviour, as has 
been demonstrated in numerous experimental 
investigations (Ward, Samuels & Gutler, 1959, 
1965; Barden, 1971, 1972; Franklin & Mattson, 
1972; Kirkpatric & Rennie, 1972; Saada & Ou, 
1973; Gibson, 1974; Atkinson, 1975; Saada, 
Bianchini & Shook, 1978; Yong & Silvestri, 1979). 
This anisotropy becomes marked in heavily over- 
consolidated clays, such as the London clay; an 
extreme case is the eventual formation of strongly 
anisotropic laminated shales, slates and mudstones. 

Sands also exhibit deformational anisotropy, 
which arises chiefly from the influence of gravity 
and particle shape on the deposition process. 
Experimental investigations have revealed that 
sand particles have a strong tendency to adopt 
preferential orientation with the maximum dimen- 
sion aligned in a horizontal plane (Willoughby, 
1967, Parkin, Gerrard & Willoughby, 1968); thus 
the number of contact points per unit horizontal 
area is smaller than that per unit vertical area 
(Rowe, 1962; Barden, 1963). Such a fabric is condu- 
cive to greater radial than vertical compressibilities, 
as was shown by Gerrard (1968) and Arthur & 
Menzies (1972). A set ofequal-diameter spheres in a 
hexagonal array have cross-anisotropic properties 
(Gassman, 1953). 

There is a growing awareness of the need to 
account for the influence of soil cross-anisotropy 
when estimating foundation settlements or dis- 
tribution of stresses in the ground. This is well 
reflected in a recent state-of-the-art presentation on 
foundation behaviour by Burland, Broms & de 
Mello (1977) as well as a number of publications 
dealing with the mathematical modelling of soil 
anisotropy and its implications on foundation 
response. However, essentially all of these studies 
are limited to considering only static loading 
conditions. The interest in designing foundations 
subjected to dynamic loads (such as those arising 
from supported machinery, sea waves, earthquakes 
and ground-transmitted traffic or blast vibrations) 
makes necessary the study of the dynamic inter- 
action of foundations with cross-anisotropic soil. 
Accordingly, the objective of this Paper is to assess 
the effect of soil anisotropy on the response of strip 
foundations to dynamic vertical, horizontal and 

rotational excitation. 
In order to reach conclusions of the widest 

possible applicability with actually encountered 
soil deposits, this Paper idealizes soil as a layered 
medium, with each layer being a linearly elastic 
cross-anisotropic continuum having a vertical axis 
ofsymmetry and exhibiting linear hysteretic-type of 
damping when subjected to dynamic stresses. A 
semi-analytical solution is presented based on a 
transformation that uncouples the Navier-type 
governing equations in terms of pseudo-distor- 
tional and pseudo-dilatational wave potentials. 
Analytical expressions can, thereby, be obtained for 
displacements and stresses in each layer and the 
correct boundary conditions at layer interfaces can 
be enforced in continuous form. On the other hand, 
in order to satisfy the mixed boundary conditions 
at the surface, a numerical scheme has been devised 
involving discretization into a number of uniformly 
spaced nodal points and use of a so-called fast 
Fourier transform algorithm to perform the 
pertinent integrations. As a result, the method 
possesses the flexibility of the numerical techniques 
(like the finite element method) in properly hand- 
ling any prescribed mechanical behaviour of the 
soil-foundation interface; thus the two commonly 
assumed extreme cases of adhesive and frictionless 
contact can be studied almost as easily as the more 
realistic case of a contact obeying Coulomb’s 
friction law. 

Yet, owing to its analytical character, the pre- 
sented method is devoid of a crucial limitation of 
the finiteelement techniques, namely, their inability 
accurately to model the radiation of wave energy at 
very large horizontal and vertical distances from 
the oscillating foundation. It is true, of course, that 
special energy-absorbing boundaries, such as those 
developed recently by Valliapan, White & Lee 
(1977) for a cross-anisotropic material, can provide 
partial remedy and lead to a more or less acceptable 
dynamic finite element formulation. Nonetheless, 
besides their greater accuracy, analytical solutions 
offer a clear economic advantage in terms of both 
computer storage and time. This makes quite 
feasible the performance of comprehensive para- 
metric studies aimed at evaluating the relative 
importance of anisotropy with a variety of charac- 
teristic soil profiles ranging from homogeneous 
halfspace to shallow stratum underlain by rigid 
rock. The results of such a study are presented here 
in the form of graphs and simple formulas of direct 
practical applicability, and are compared with 
other relevant solutions. 

SUMMARY OF PREVIOUS WORK 

Several studies related to the present problem 
have been published and it is useful to review 
them briefly before proceeding to our analyses. 
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Studies related to the static problem 

Michell(1900), extending the work of Boussinesq 
and Cerruti, presented a solution for stresses and 
displacements in a halfspace exhibiting hexagonal 
anisotropy’ and subjected to a vertical or hori- 
zontal point force. Much later, his solution was 
simplified and made popular by Barden (1963) who 
proposed the cross-anisotropic halfspace as an 
improved mathematical model for natural soils, 
clays or sands. The major conclusion of Barden’s 
study is that, for a realistic range of Poisson’s ratios, 
as the ratio n of the horizontal to vertical Young’s 
moduli increases so does the load-spreading capa- 
city of the soil; hence, both stress concentration 
along the load axis and surface settlement decrease. 

Extensive studies on static interaction of founda- 
tions with anisotropic soils were presented by 
Gerrard & Harrison (1970a, b); they reported com- 
plete solutions (stresses, strains, displacements) for 
cross-anisotropic and orthorhombic homogeneous 
halfspaces carrying circular or strip foundations of 
infinite or zero rigidity that are loaded by vertical, 
horizontal and moment forces. Their results, 
although in a somewhat complicated mathematical 
form, have contributed much to current under- 
standing of the behaviour of anisotropic soils. The 
same authors (Harrison & Gerrard, 1972) estab- 
lished the equivalence between earth reinforced by 
means of thin sheets (or bars) of a stiffer material, 
and a cross-anisotropic (or orthorhombic) homo- 
geneous medium. As a concept, reinforced earth 
had been proposed by Casagrande to model natur- 
ally stratified soil deposits; Westergaard (1938) 
worked out the idea and presented solutions for a 
halfspace so stiff in the horizontal direction, that no 
lateral strains could occur. Such a medium is, in 
fact, a cross-anisotropic material with n = cc and 
V VH = 0. Particular types of cross-anisotropy, 
characterized by three instead of five independent 
parameters, were studied by Wolf (1935) and 
Milovic (1972). 

Analytical results for an incompressible cross- 
anisotropic halfspace whose modulus, E,, varies 
with depth according to 

E,(z) = rz (1) 

while m, n, vVH and vHH remain constant, have been 
published by Gibson (1974), Gibson & Kalsi (1974) 
and Gibson & Sills (1974). Such a continuum, 
which is of direct practical interest when deter- 
mining undrained settlements of foundations on 
deep saturated clay deposits, was found to behave 
as a ‘Winkle? medium; regardless of geometry of 
the loaded area, surface settlement is directly 

’ The terms hexagonal anisotropy as well as transverse 
isotropy are used in the literature and are equivalent to the 
term cross-anisotropy employed in this Paper. 

proportional to the applied normal pressure. With 
very good accuracy their main result simplified to 

WC% Y) = &* Y) 
4-n 

rC(4 - n) GvHIEv + 11 
(2) 

where, in this case, n and G&E, fully describe soil 
cross-anisotropy, since for an incompressible 
medium 

V VH = l/2 
(3) 

V HH = l-n/2 

As a direct consequence, soil reactions against rigid 
smooth foundations of any shape are uniform. This 
is also true with isotropic incompressible media 
obeying equation (1) (Gibson, 1974). It appears that 
this interesting conclusion can be generalized: 
Sveklo (1970) has found that in the case of rigid 
foundations having circular, elliptical or ellipti- 
cal-paraboloidal contact with an anisotropic 
homogeneous halfspace, soil reactions are indepen- 
dent of both type and degree of anisotropy-a 
conclusion that does not apply to foundation 
settlements. 

Finally, Hooper (1975) studied with a finite 
element formulation the interaction of circular 
flexible rafts in adhesive contact with a cross- 
anisotropic layered stratum. Using material pro- 
perties appropriate for the overconsolidated Lon- 
don clay (Ward et al., 1959; Ward, Marsland & 
Samuels, 1965; Uriel& Kaiiizo, 1971; Gibson, 1974; 
Atkinson, 1975), he demonstrated that total and 
differential foundation settlements may be reduced 
by about 40% under undrained conditions if cross- 
anisotropy is taken into account; under drained 
conditions this reduction is only 5-20%, depending 
on the type of soil profile assumed (homogeneous 
or linearly heterogeneous). 

Studies related to the dynamic problem 

Kirkner (1979) presented an analytical study of 
the steady-state response of a circular foundation 
on a cross-anisotropic halfspace whose elastic 
parameters satisfied a certain constraint relation- 
ship (equation (6)), originally suggested by Carrier 
(19461. The motivation in establishing such a \ I 

relationship was one of convenience: the three 
equations of motion can uncouple and thereby be 
solved analytically. Several other researchers have 
also used equation (6) to restrict material aniso- 
tropy. For instance, Payton (1975) obtained solu- 
tions for dynamic displacements due to a con- 
centrated force suddenly applied at a point within 
an infinite elastic space; and Valliapan et al. (1976) 
derived dashpot constants of energy-absorbing 
boundaries for a plain-strain finite-element for- 
mulation. 

An interesting conclusion of Kirkner’s work is 
that anisotropy may have different effects at high 



164 G. GAZETAS 

‘- LO 

. 
,-- --,__, + _-_ _-_ _-w -  ̂ - 

Ldy--_-L-_:_- -_-- 
. . . . . . . . . . . . . . . . 

. . . 

::;. ‘., . . . .- .,..,.... . .‘:_... .:::. .‘. 

,‘,. .::.. .:..:. . . . . . . .... 
. . . . . . . :* . .:*... .:. . ‘.. 

. ..-. ,‘.... .‘:;., 
. . 

Cross-anisotropic 
layer E,, E,, G,,r vVH, vHHj < 

,/ I’ 
, I’ ’ 

I I,, f / , i, /,/ “,‘, 
,,,I< / 1, / / f , 

/ 1 I ‘/ ,,/‘f’, 
.‘. . . . * . . . . . . . . ~ . 9 . . 

.,: . . 1 z . . . . ..-.. 
: 

. :‘. 

Fig. 1. Soil profile and footing diagram 

and low frequencies of vibration. For example, on 
an incompressible medium a circular footing 
experiences static horizontal displacements that 
decrease as the lateral soil stiffness increases rela- 
tive to the vertical, i.e. as n = E,/E, increases; at 
high frequencies, however, larger dynamic displace- 
ments are associated with larger n values. Such a 
conclusion is of practical significance since the 
constraint relationship on which the analysis was 
based has been shown to be satisfied with sufficient 
accuracy by many soils, as demonstrated in this 
Paper. 

DEFORMATIONAL ELASTIC SOIL 
ANISOTROPY 
Mathematical modelling 

The use of an elastic model for soils at low 
working stresses has received much attention (e.g. 
Poulos & Davis, 1974). It is generally accepted that 
for stress changes imposed by shallow foundations 
linear elastic theory provides an adequate engineer- 
ing model enabling the prediction of settlements to 
a sufficient degree of accuracy. This is especially 
true e.g. for heavily overconsolidated clays (Wroth, 
1971) and brittle sensitive clays (Yong & Silvestri, 
1979) stressed below their yield limit. Moreover, 
elastic models lead to satisfactory answers in 
problems of dynamic soil-foundation interaction; 
for small dynamic strains such as those developed 
beneath machine foundations, soils exhibit an 
approximately elastic behaviour (Richart, Woods 
& Hall, 1970) while the local soil non-linearities 
arising during strong earthquake or wave excita- 
tion ‘do not significantly affect the response of the 
structure’ (Kausel, Roesset & Christian, 1976). 

A cross-anisotropic elastic material is charac- 
terized by five independent constants: two Young’s 
moduli E, and En, a shear modulus Gvn, and two 

Poisson’s ratios vvu and vHH (Lekhnitskii, 1963; 
Pickering, 1970). With the vertical axis z being the 
axis of elastic symmetry (Fig. 1), the stress-strain 
relationships appropriate for plane-strain condi- 
tions take the form 

ox = Di,e,+D~e, 

ey = D,,a,+D,,s, 

ez = D,,e,+&s, 
(4) 

r XZ = Gvn Y,, 

where the four elastic coefficients D, ,, D,,, D,, and 
D are related to the Young’s moduli and 
PZsson’s ratios 

Dii = (E&)(1-nvvn2) 

Di2 = (-%la)(nvvn2 +v& 

Di3 = (-%la)vvn(l +vnn) 
(5) 

D,, = (&/a)(1 -vnu2) 

in which 

n = E,/E, 

a = (1 + vu”) (1 - vnn - 2nvvn’) 
(54 

Thermodynamic considerations require that the 
strain energy in an elastic material due to all 
possible stress fields be non-negative. This imposes 
on the acceptable range of the elastic parameters 
certain restrictions (Hearmon, 1961; Pickering, 
1970; Gibson, 1974; Hooper, 1975). 

Constraint relationship 

The constraint relationship which has been 
proposed by Carrier (1946) defines a subset of all 
cross-anisotropic materials by making the shear 
modulus Gv, a function of the other elastic 
parameters 

2 

GVH = 
D,,D,,-D,3 

D,,+~D,,+~s 

Thus the number of independent elastic parameters 
reduces to four, and the equations of motion can 
uncouple and be solved in closed form--a con- 
venient simplification which motivated the adop- 
tion of equation (6). For a material with 
V”” = V”“ZV and E, = E,= E, equation (6) 
reduces to the well-known relationship between 
moduli and Poisson’s ratio of isotropic media: 
2G,, = 2G = E( 1 + v); that is, isotropy can be re- 
covered from the proposed constraint relationship. 

From a physical standpoint, significant experi- 
mental evidence has come to support the use of 
equation (6) with many types of soil (Gazetas, 
1980b). This rather unexpected but most welcome 
conclusion was reached by testing the validity of 
equation (6) against numerous published experi- 
mental data which are summarized in Table 1. 
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Using the reported values of n, vVH, vHH and E,, tested in triaxial compression, extraneous bending 
shear moduli GvH were computed from the con- and shear end effects are generated; as a result the 
straint relationship; they are also depicted in Table recorded E,, underestimates the actual modulus 
1 for comparison with the experimental values. by an amount which increases with the degree of 

The performance of equation (6) appears to be anisotropy. Consequently, Gv, may in reality be 
quite satisfactory. In several cases calculated and somewhat larger than the reported values indicate, 
measured moduli are nearly identical and in no case especially for the heavily overconsolidated London 
do they differ by more than 20%. This is believed to clay. This might further improve the agreement 
be within the range of possible error of the reported with values derived from the constraint relation- 
G VH values, which are frequently derived from ship. 
Youngs moduh E,, E, and E,, (Gibson, 1974). In conclusion, equation (6) appears to be quite a 
Because, as pointed out by Pagan0 8c Halpin (1968) realistic assumption for a number of clays and its 
and Saada & Bianchini (1977), when samples cut use in the theory that is presented here is thus fully 
with their axis inclined at 45” to the vertical are justified. 

Table 1. Anisotropic elastic constants of clays and evaluation of the constraint relationship 

T T T 
Reference 

Computed 
(equation (6)) 

Gv&v n VVH ‘HH GvH/& Description of soil 

Heavily overconsolidated 
London clay (Ashford) 
(undrained loading) 

Depth: 30 ft 
Depth: 50 ft 
Average of all 

samples 

Heavily overconsolidated 
London clay (Barbican 
Arts Centre) 
(drained loading) 

Lightly overconsolidated 
kaolinite clay 
(Florida Edgar plastic 
kaolin) 
(undrained loading) 

uF’ = 40 lb/in2 
water content 

= 40.7% 
crc’ = 60 lb/in’ 
water content 

= 38.7% 

Normally consolidated 
illite clay (Grundite) 
(undrained loading) 

uc’ = 70 lb/in* 
w = 29.5% 
oc’ = 60 lb/in’ 
w = 38.1% 

Colorado clay shale 
(drained loading) 

Sensitive, naturally 
cemented Champlain 
sea clay (Canada) 
(drained loading) 

Ward et al. (1959) 
Ward et al. (1965) 
Gibson (1974) 

1.35 0.50 0.325 0.35* 0.355 
1.59 0.50 0.205 0.37* 0.41 
1.80 0.50 0.08 0.38* 0.46 

Atkinson (1975) 

Saada et al. (1978) 

200 

1.25 

1.355 

1.17 

1.13 

0.19 

0.50 

0.50 

0.50 

0.50 

OQO 0.5367 0.553 

0.375 0.356 0.364 

0.322 0.362 0.378 

0.415 0.355 

0.436 0.322 

0.353 

0.310 

Bianchini (1980) 

Kaarsberg (1968) 1.38 0.197 0.266 0.423 0524 

Yong & Silvestri 
(1979) 

0.62 0.35 0.20 0.205” 0.187 

*Estimated from E,,, using equation (21) of Gibson (1974). 
t Estimated by the Author from undrained tests on the basis of the theoretical formulas of Uriel & Kaiiizo (1971), as 
explained in Appendix 1. 
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PROBLEM FORMULATION AND SOLUTION: 
CROSS-ANISOTROPIC LAYERED HALFSPACE 

Within each layer, dynamic equilibrium under 
plane-strain conditions, as is appropriate for strip 
loading, requires that the stresses satisfy the equa- 
tions 

(7) . 

where the displacements a@, z) and w(x,z) are 
related to the strain components E,(x, z), E,(x, z) and 
yXZ(x, z) as follows 

au 

% = a; 

aw 
Ez = x (8) 

au aw 
Y XL =5+x 

Equations (4), (7) and (8) describe completely the 
time and space variation of stresses, strains and 
displacements. Upon eliminating stresses and 
strains, the following Navier-type coupled equa- 
tions of motion are obtained 

a2 u 2 2 azw 
~,t,= D,,~+GYH$+(D~~+CFH)- axaZ 

(9) 
2 

Pg=G”” ~~+D,,!$+Vh,+G,.~& 

For computational convenience define 

a2+3, p+, q=; 

(10) 
j2+l, p+, b+$ 

33 33 

It can then readily be verified that, due to the 
constraint relationship (equation (6)) 

A’-(p+q2)/b = ‘I’ (11) 

To uncouple equations (9) two potential 
functions N(x, z) and H(x, z) are introduced, related 

to IA and w as follows 

aN aH 
u = z+bz 

dN aH w = b--__ 
aZ ax 

(12) 

Substituting (12) in (9) while accounting for (10) and 
(11) leads, after some simple operations, to 

(13) 
a2H d2H 2a2 H 
Jp+==F -gF 

The general harmonic solution of (13) is 
N = (A! eihmr + AU e - ihmr) ei(wl - hlx) 

H = (B’ eikV + B” e-‘k42) eiCM -kpx) 
(14) 

where i = 4 - 1, provided that the parameters 1, m, 
p and 4, being in general complex numbers, satisfy 

1212+m2 = 1 (15) 

p2+q2 = 1 (16) 

In the above equations o is the frequency of 
vibration (in rad/s), h = W/OL and k = co//?. It is easy 
to check by direct substitution that equations (14) 
(along with equations (1.5) and (16)) constitute a 
solution of equation (13). A’, A”, B’, B” in (14) are 
arbitrary constants of integration, to be determined 
from the boundary conditions of the problem. 

Using equations (14) (12), (8), (10) and (4) 
expressions for u, w, err and ~~~ can be derived in 
terms of the same constants ofintegration A’, A”, B’, 
B” (shown in matrix form in Table 2). 

Having expressed stresses (or, r,,) and 
displacements (u, w) in terms of four constants for 
each layer, a total of 4n equations are needed to 
determine all the unknown quantities, if n is the 
number of soil layers in the deposit. These 
equations are provided by the boundary conditions 
at each layer interface and at the loaded surface. 
The analysis is identical with the one described by 
Gazetas (1980a) in connection with a soil deposit 
consisting of heterogeneous isotropic layers, 
although the basic solutions for u, w, a, and rxr 
within each layer are different in the two cases. 

Table 2. Expressions for u, w, cr2 and r,,; f(z) = e”““= and g(z) = e*q= 

-h*W* +bm*)D,,f(4 k* pdbv- 1)4, s(z) -h2(d2 +bm*P,,lf@) -k2pq@v- I)D&dz) A’ 

h* ml( I+ b) GVH/(4 k*(p* - bq’) Gw g(z) -h* ml( 1 + b) GYH/f(z) k2 (P* -bq’) G&g(Z) B e,(w_h,x, 

- ihlf(z) ikqbg(d - ihl/f(z) -ikqb/g(z) A” 

ihmbf(z) ikpg(4 - ihmb/f(z) ikplg(4 10 B” 
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Fig. 2. Undrained dynamic horizontal displacement-load ratio (H/B = 1): (a) in-phase component; (b) WA-out-of-phase 
component 

PRESENTATION OF RESULTS 

Results are obtained for vertical, sliding and 
rocking vibrations of rigid massless footings 
subjected to vertical, horizontal and moment 
loading varying harmonically with time. By 
allowing the frequency of vibration to vanish, 
general solutions for the static displacements are 
also readily derived. Only two extreme types of 
mechanical behaviour of the soil-footing interface, 
corresponding to adhesive or frictionless contact, 
are discussed in the Paper since several analyses 
have confirmed that a contact obeying Coulomb’s 
friction law leads to intermediate response 
amplitudes. Also, since layering conditions vary 
from site to site, only two simple, characteristic soil 
models, namely, a homogeneous cross-anisotropic 
halfspace and a homogeneous cross-anisotropic 
stratum underlain by rigid rock, are examined here. 
These models represent extreme categories of 
actually encountered soil profiles and their study 
can offer considerable insight into the dynamics of 

cross-anisotropic soils. 
The results are displayed in the form of 

normalized displacement-load amplitude ratios 
(hereafter called compliances) as functions of 
dimensionless groups of key material and 
geometric parameters 

Ev 4 
p, Or 

Ev 6, 

-P, Or 

Ev BZ 4, 

M0 

= f ( H 
-,4v”H,vH”A”,r B > 

(17) 

in which a,, 6, and 4, are the amplitudes of the 
vertical, horizontal displacements and the angle of 
rotation of the footing caused bv harmonic forces of 
amplitudes (per unit length) Pv, P, and M, 
respectively; B is half the foundation width and H 
the thickness of the soil deposit; Ev, n, vYH and vHH 
are the independent anisotropic soil parameters; A, 
is a dimensionless frequency factor defined as 

A, = ~W&/P) (18) 
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Fig. 3. Undrained dynamic horizontal displacement-load ratio (H/B = 3): (a) in-phase component; (b) W%-out-of-phase 
component 

and 5 is the critical damping ratio which reflects the 
internal energy dissipation in soil due to hysteresis 
and friction. 

Each displacement consists of two components; 
one in phase and one 90” out of phase with the 
applied harmonic load. The first represents the 
recoverable, elastic component of deformation 
while the second expresses the dissipation of energy 
by waves propagating away from the foundation 
(radiation or geometric damping) and by hysteresis 
and friction in the soil (internal damping). 

PARAMETRIC STUDY: UNDRAINED RESPONSE 

Study of the undrained foundation response is of 
particular geotechnical engineering interest since 

initial displacements, caused by static loads during 
or immediately after construction, take place due to 
undrained shearing deformations of water- 
saturated clays that may exist in the soil deposit. 
Moreover, dynamic loads involve short time 
intervals between imposed stress changes and thus 
undrained conditions prevail in most saturated 
soils (see, for example, Richart et al., 1970). 

Under undrained conditions saturated soil 
behaves as an incompressible solid and the two 
independent Poisson’s ratios, vvH and vHH, are given 
by equations (3). Thus, the degree of material 
anisotropy is uniquely described with the ratio 
n = E,/E,, since the shear modulus ratio 
tn = G,,/E, can be computed in terms of n from the 
constraint relationship (6). 
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Fig. 4. Undrained dynamic horizontal displacement-load ratio (H/B = co): (a) in-phase component; (h) 9O%-out-of-phase 

Horizontal loading 
Figures 2, 3 and 4 portray the horizontal 

displacementtload ratio Ev 6,/P, (horizontal 
compliance) as a function of the frequency factor A, 
and the degree of cross-anisotropy n, for three 
homogeneous soil deposits. A wide range of 
possible thicknesses is covered, from H/B = 1 (very 
shallow deposit) to H/B = co (very deep deposit). 
Both in-phase and !W-out-of-phase displacement 
components are shown for a critical damping ratio 
5 = 0.05. Adhesive contact is assumed between 
footing and soil. Several conclusions can be drawn 
from these figures. 

Layer thickness. Regarding the effect of layer 
thickness, for a given degree of anisotropy, it is 
evident that the existence of rigid bedrock at 
relatively shallow depths drastically reduces the 
static and low-frequency foundation displace- 
ments. This is better illustrated in Fig. 5 depicting 

n= E,tE, 

Fig. 5 Undrained static horizontal displacement-load 
ratio as a function of the degree of ansiotropy n, for various 
values of the H/B ratio 
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Fig. 6. Undrained dynamic vertical displacement-load ratio (H/B = 1): (a) in-ph ase component; (b) !M”%-out-of-phase 
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Fig. 7. Undrained dynamic vertical displacement-load ratio (H/B = 3): (a) in-phase component; (b) 90x-out-of-phase 
component 
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Fig. 8. Undrained dynamic vertical displacement-load ratio (H/B = CC): (a) in-phase component; (b) 90x-out-of-phase 
component 

the horizontal static compliance as a function of the 
degree of anisotropy n for several values of the H/B 
ratio. With an infinitely thick deposit (i.e. halfspace) 
6, tends to infinity as A, tends to zero, in agreement 
with classic theory of elasticity (e.g. Poulos & 
Davis, 1974). 

The variation of dynamic displacements with 
frequency reveals an equally strong dependence on 
H/B. On a stratum, both in-phase and 90”-out-of- 
phase components of displacement are not smooth 
and monotonically decreasing functions of fre- 
quency, as on a halfspace, but exhibit several peaks 
which are the product of resonance phenomena: 
waves propagating away from the foundation 
reflect at the soil-bedrock interface and return back 
to the surface. As a result, foundation motion 
significantly increases at specific frequencies of 
vibration which, as shown later, are close to the 
natural frequencies of the soil deposit. 

In the low frequency range, below the first 
resonant frequency, as long as bedrock does exist at 
some depth below the surface (i.e. H # m), the 90”- 
out-of-phase component of displacement is negli- 

gibly small, especially when compared with the 
corresponding halfspace displacements. This is due 
to the fact that no surface waves can be created in a 
soil stratum at these frequencies; thus no radiation 
damping is present and the said displacement 
component reflects only the internal damping in the 
soil. 

Cross-anisotropy. It is evident from Figs 2 to 4 
that, relative to a corresponding isotropic deposit, 
the following effects can be ascribed to cross- 
anisotropy. 

As the ratio n of horizontal to vertical modulus 
increases, the static horizontal compliance de- 
creases-an anticipated phenomenon that is more 
clearly illustrated in Fig. 5, for several H/B ratios. In 
the extreme case of n = 4 the medium behaves as 
irrotational, in addition to being incompressible, 
and consequently no deformation occurs, as was 
first pointed out by Gibson (1974). 

The importance of anisotropy increases as the 
deposit becomes thicker (Fig. 5). In other words, the 
larger H/B is, the faster the static 6, decreases with 
increasing n. For H/B between 1 and 6 and n 
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Fig. 9. Undrained static vertical displacement-load ratio 
as a function of tbe degree of anisotropy n, for various 
values of tbe H/B ratio 

between 0.50 and 2, the simple expression 

6 
5P” 4.10-n(H/B)O” 

H static = 8E 
” -1 f(5/3)(BIH) 

(19) 

for 

l<H/B<6 

O.SGnG2.5 

fits the numerical data with very good accuracy 
(error less than 4%). 

The second effect of increasing n ratio is to 
increase the resonant frequencies and decrease the 
resonant amplitudes for all soil profiles but the 
halfspace. For each deposit the first resonant 
frequency can be approximated with reasonable 
accuracy by the fundamental natural frequency of 
the deposit in shear vibration. The latter, obtained 
as for a cantilever shear beam (see, for example, 
Newmark et al., 1974), is given by 

and leads to a resonant frequency factor 

A 
7CB 

V,r = 2H(4-n)m’i2 (21) 

if account is taken of the constraint relation in 
undrained conditions. As an example, for H/B = 1 
and n = 4, 1 and 2, equation (21) yields A”., = 082, 
0907 and 1.111, respectively, which compare 
favourably with the values 0.78086 and 1.08 read 
from Fig. 3. 
Figures 2-5 and equations (19) and (21) can be 
utilized in practice to predict the performance of a 
variety of foundations and structures subjected to 
static and dynamic horizontal loads. The latter may 
either be applied directly on the structure and then 
transmitted into the ground through the founda- 
tion (as with machine, wind or sea-wave loads) or 
transmitted from the ground to the structure (as 
with earthquake and traffic-induced loads). Pro- 
cedures that employ the compliance functions to 

01 I I I 1 1 

I 2 3 4 5 6 7 8 9 10 

Overconsolidation ratio, dCldO 

Fig. 10. Settlement correction for three-dimensional ef- 
fects on initial excess pore pressure distribution (adapted 
from Highway Research Board, 1973) 

determine the response of foundations and 
structures to such dynamic loads are well 
established and can be found in numerous 
publications (Richart et al., 1970; Ratay, 1971; 
Yoshimi et al., 1977; American Society of Civil 
Engineers, 1979). 

Vertical loading 

The vertical settlement-load ratio E,&/P, is 
displayed in Figs 68 as a function of A, and n, for 
three homogeneous soil deposits having H/B = 1,3 
and cc, respectively. Adhesive contact is again 
assumed between footing and soil, while 5 = 0.05. 

Several differences in the response of a founda- 
tion to vertical and horizontal loads are evident 
from a comparison of Figs 68 with Figs 24. 

Vulnerability. For a given soil deposit, founda- 
tions are more vulnerable to horizontal than 
vertical statically applied loads, since they 
experience horizontal displacements larger, by a 
factor of at least 2, than the settlements due to a 
vertical load of equal magnitude. 

Layer thickness. Static settlements exhibit a 
stronger dependence on layer thickness but are less 
sensitive to the degree of soil anisotropy than 
horizontal displacements are. This is better 
illustrated in Fig. 9, as compared with Fig. 5. It can 
be seen that foundations on very shallow layers (e.g. 
H/B = 1) settle by an amount which is essentially 
independent of n. The phenomenon can be attri- 
buted to the one-dimensional nature of deforma- 
tions that take place in shallow deposits under the 
central part of relatively large loading areas (i.e. in 
cases of small H/B ratio). It seems reasonable to 
argue that such deformations depend primarily on 
E, and vvu; E, affects only the deformations under 
the foundation perimeter and its importance dimi- 
nishes with H/B. Thus n is unimportant in such 
cases. 

The phenomenon is reminiscent of the develop- 
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Fig. 11. Undrained dynamic angle of rotatiowmoment ratio (H/B = 1): (a) in-phase component; (b) WA-out-of-phase 
component 

ment of excess pore pressures in clayey strata 
subjected to axisymmetric loading, as discussed by 
Skempton & Bjerrum (1957). Figure 10 shows the 
dependence on overconsolidation (OCR) and H/B 
ratios of the correction factor which should multi- 
ply the one-dimensionally determined consolida- 
tion settlement in order to compensate for three- 
dimensional (3-D) effects on the initial excess pore- 
water pressure distribution. It is clear that in 
shallow strata (H/B < 1) the 3-D correction is minor 
and, moreover, almost independent of OCR. 
Certainly, under plain-strain loading conditions, as 
is the case here, 3-D effects would be even smaller 
and thus settlement would practically be indepen- 
dent of the n ratio which, in general, increases with 
increasing OCR (e.g. Gibson, 1974). 

For relatively shallow deposits (1 < H/B< 4), the 
simple expression 

6 v,s,atic = 4$(4-r1)(~~~)t~‘~’ 1 + 3.5 g (22a) 
” ( > 

with 

1<HJB<4 

0.5 < n < 2.5 

fits the numerical data with reasonable accuracy 
(error within 10%); for deeper deposits the approxi- 
mation takes the form 

6 V,static =2(4-n) log,,: (22b) 
” 

with 

HJB>8 

all n values 



174 G. GAZETAS 

(4 

_o.5~_~_ 
0 1 2 

Frequency factor, A, 
3 4 

(b) 

Fig. 12. Undrained dynamic angle of rotatiorr-moment ratio (H/B = 3): (a) in-ph ase component; (b) !N’Z-out-of-phase 
component 

Contrast equation (22b) with the expression for 
the undrained settlement of a uniformly loaded 
circular area given by Hooper (1975) (on the basis of 
results by Gerrard & Harrison, 1970a). Use of the 
constraint relationship reduces that expression to 

6 = PY(4-n) 
Vsstat’c 2xR-b 

(23)2 

with 

H/B = co 

all n values 

which reveals a similaily strong dependence on 
settlement on n for both circular and strip footings 
on very deep homogeneous soil deposits. Further- 

z P, in equation (23) is total applied force on a circular 
area, whereas P, in the previous equations is total force per 
unit length on a strip footing. R = the radius of the 
foundation. 

more, introducing the constraint relationship in 
equation (2) (derived by Gibson & Sills, 1975), 
yields for a linearly heterogeneous cross- 
anisotropic halfspace 

6 V,static 
=%(4-n) 

in which Pv, av is the average vertical pressure on the 
footing and r the rate of soil heterogeneity (equa- 
tion (1)). A similar dependence of undrained settle- 
ment on the degree of anisotropy n for both 
homogeneous and heterogeneous deep soil 
deposits can be inferred from equation (24). 

Resonance. Resonance phenomena are again 
observed at one or two frequencies of vibration but 
the corresponding peaks are not as sharp as those 
of the horizontal dispiacements. In fact, on very 
shallow deposits (H/B = 1) a single flat resonance 
takes place, which is characteristic of a highly 
damped system. 

A possible explanation of such behaviour stems 
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Fig. 13. Undrained dynamic angle of rotation-moment ratio (H/B = co): (a) in-phase component; (b) !Xt%-out-of-phase 

from the fact that both compressional and shear 
waves participate in the motion at first resonance 
which occurs at a frequency factor 

that lies in between the fundamental natural 
frequency factors of the deposit in pure shear 
(equation (21)) and in pure dilatation (A,,, = CO, 
due to incompressibility of the material). Surface 
waves are also present during resonance, as a result 
of the interference of the two types of waves; the 
ensuing radiation damping contributes to further 
limiting the peak amplitudes of motion (Gazetas & 
Roesset, 1979). 

Moment loading 
The response of a rigid foundation to a harmonic 

moment M, eiot is described in Figs 11-14 through 
the normalized dynamic angle-of-rotation- 

moment ratio E, B2 4,/M,. 
The static value of the ratio converges to a finite 

value (e.g. 0.92, for n = 1) as the depth of the deposit 
grows beyond any limit, in contrast with the static 
horizontal and vertical displacement-load ratios 
that tend to infinity as the stratum tends to become 
a halfspace (Figs 4, 8). Increasing layer depth 
beyond a value corresponding to H/B = 3 has 
practically no effect on rotation. This implies that 
the stress and strain fields caused by moment loads 
are of limited extent, thus influencing only the near- 
surface soil (Gazetas & Roesset, 1976; Gazetas, 
1980a). 

One relatively flat resonance takes place at a 
frequency factor A,!, which can be approximated 
by equation (25). This indicates that an interference 
between dilatational and shear waves is responsible 
for the observed peak, much in a similar way as with 
vertical vibrations. However, the effect of soil 
anisotropy is evident in rocking vibrations even at 
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Fig. 14. Undrained static angle of rotation-moment ratio 
as a function of the degree of anisotropy n, for various 
values of the H/B ratio 

very shallow deposits (e.g. H/E = 1) and small 
frequencies of oscillation (e.g. A,< 1.5); this is 
hardly the case with vertical motion, as discussed 
previously (Fig. 6). 

EFFECT OF FRICTIONLESS CONTACT 

Under static loading conditions no secondary 
stresses develop in the soil-foundation interface if 
the material is incompressible. That is, no shear 
tractions are generated during vertical and moment 
loading and no normal tractions during horizontal 
loading. Under dynamic excitation these 
conclusions appear to be true for horizontal load- 
ing throughout the frequency range examined; the 
response curves corresponding to the two types of 
contact behaviour (i.e. allowing or not allowing 

2 

Frequency factor, A, 

(b) 
Fig. 15. Effect of frictionless contact on dynamic angle of rotation-moment ratio (H/B = 1, n = l/3); solid line = adhesive 
contact, dotted line = frictionless contact; (a) in-phase component; (b) Wk+,ut-of-phase component 
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secondary tractions to develop) are therefore 
essentially identical for all the profiles examined. 

However, dynamic shear tractions do arise 
during resonance in vertical and rocking vibrations 
of footings adhesively connected to the soil surface. 
Such tractions are not present under an ideally 
smooth (frictionless) footing. As a consequence, 
the peaks of the frictionless response curves occur 
at slightly higher frequencies, i.e. they move away 
from the fundamental natural frequency of the 
deposit in shear vibrations. Figure 15 illustrates this 
observation as it applies to rocking vibrations 
(Vertical vibration curves for frictionless and 
adhesive contact show similar differences.) Figure 
15 also shows the somewhat higher peaks of the 
frictionless curves. Overall the observed discrep- 
ancies are rather insignificant and, furthermore, 
decrease with increasing degree of anisotropy n. 

SUMMARY AND CONCLUSIONS 

The Paper has presented a rigorous solution to 
the problem of determining the static and dynamic 
response of rigid strip footings resting on the 
surface of a soil deposit consisting of any number of 
cross-anisotropic soil layers. Vertical, horizontal 
and moment loading has been considered and the 
results of comprehensive parametric studies have 
been presented in the form of normalized displace- 
ment-load ratios as functions of dimensionless 
geometric and material parameters. These results 
can be readily used in practice to study the 
performance of foundations and structures in a 
variety of static and dynamic loading 
environments. Simple characteristic soil profiles 
and undrained soil behaviour have been 
considered, although the method can treat as easily 
any horizontally layered deposit and drained 
conditions. 

Three main factors influence the normalized 
displacement-load ratios of rigid foundations on a 
cross-anisotropic soil stratum 

(a) the stratum depth to foundation halfwidth ratio 

HIB 
(b) the degree ofsoil anisotropy, measured with the 

ratio n = .E,/E, 
(c) the dimensionless frequency factor A, 

The importance of these factors has been demon- 
strated through a number of parametric plots for all 
three types of loading and through extensive 
comparisons with pertinent results of other 
researchers for isotropic and anisotropic soils. On 
the basis of the presented numerical data, simple 
and sufficiently accurate formulas have been 
developed and offered in the Paper for static 
displacements and resonant frequencies in terms of 
n and HJB. 

The results of these studies suggest that soil 

anisotropy greatly influences both static and 
dynamic foundation displacements under 
undrained conditions. Soils characterized by large 
n values are likely to experience static settlements as 
much as 50% smaller than what computations 
based on classical isotropic theories indicate; this 
may well be the reason for the usual overprediction 
of settlements on heavily overconsolidated clays. 
On the other hand, soils exhibiting n values smaller 
than unity, like sands and sensitive clays, settle 
more than isotropic soils with the same vertical 
stiffness. 

Finally, when the dynamic performance of 
foundations is studied, neglecting soil anisotropy 
may lead to unsafe conclusions regarding the 
possibility of resonance and the response at high 
frequencies of oscillation. 
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APPENDIX 1 
DRAINED GVHIEV OF LONDON CLAY 

Drained laboratory triaxial tests carried out by 
Atkinson (1975) indicated that n’ = 2, vVH’ = 0.19 and 
vuu’ = OQO, where the primes denote drained parameters. 
For a saturated poro-elastic soil, Uriel & Kafiizo (1971) 
give the following relationship for undrained n 

2n’( 1 - vu” - 2n’v,,‘*) 
n- 

1 - 2n’v,,’ + n’ -n” vVH’* - 2n’vVu’vrm - vnn’* 

which, upon substitution of the drained values, yields 
n = 1.633. Assuming similar deformational behaviour of 
the soils at Barbican Arts Centre and at Ashford, the 
undrained value of G,,/E, can be estimated as equal to 
0.372 (Table 1). Furthermore, the condition that the shear 
moduli GVH and Gnu remain constant during consolida- 
tion leads to a ratio of drained and undrained horizontal 
moduli (see Hooper, 1975). 

E” 4-n 
p= = 1.18 
E”’ 2(lf VW’) 

The vertical moduli ratio is then 

E, E, n’ 2 
-= - -e 1.18 x --= 1445 
E,’ ER’ n 1.633 

and consequently 

G ’ GVH Ev $ = y-E’ = 0.372~ 1445=0.538 
V v V 

which is the value shown in Table 1. 


